

OEE Management System

User Manual

Document Version: 1.0

Date: February 2026

Applicability: Mechanical Workshop, Three-Shift Production

Table of Contents

1. [Introduction](#)
2. [Who Fills in OEE and How](#)
3. [System Purpose and Benefits](#)
4. [System Overview](#)
5. [Main Page \(Daily OEE Sheets\)](#)
6. [Adding OEE \(Add Daily OEE\)](#)
7. [Machines — Equipment Management](#)
8. [Reports — Reporting Guide](#)
9. [Best Practices](#)
10. [Conclusion](#)

1. Introduction

1.1 What is OEE?

OEE (Overall Equipment Effectiveness) is a key performance indicator used in manufacturing to measure how effectively equipment is utilised compared to its full potential.

OEE answers the important question: “What proportion of planned production time does the equipment work effectively and produce quality products?”

OEE = 100% represents ideal production:

- Equipment operates without downtime
- Produces at maximum speed
- Outputs only quality products

1.2 What Does OEE Comprise?

OEE is calculated as the product of three components:

$$\text{OEE} = \text{Availability} \times \text{Performance} \times \text{Quality}$$

Availability

What it measures: The proportion of time when equipment was ready for operation.

Formula:

$$\text{Availability} = \text{Actual Operating Time} / \text{Planned Operating Time}$$

What reduces Availability:

- Equipment breakdowns (B. Down)
- Changeovers and adjustments (Setting)
- Waiting for materials, tooling, or tasks

Example: If during an 8-hour shift the machine only operated for 6 hours due to breakdown and changeover, Availability = $6/8 = 75\%$

Performance

What it measures: How fast the equipment operates compared to the standard speed.

Formula:

$$\text{Performance} = (\text{Number of Parts} \times \text{Standard Cycle Time}) / \text{Actual Operating Time}$$

What reduces Performance:

- Operating at reduced speed
- Micro-stoppages
- Sub-optimal processing modes

Example: If according to the standard, 120 parts should have been made in 6 hours (at 3 min/piece), but only 100 were made, Performance = $100 \times 3 / (6 \times 60) = 83\%$

Quality

What it measures: The proportion of good parts from the total number produced.

Formula:

$$\text{Quality} = \text{Number of Good Parts} / \text{Total Number of Parts}$$

What reduces Quality:

- Scrap
- Rework
- Parts requiring reprocessing

Example: Of 100 manufactured parts, 95 passed quality control. Quality = $95/100 = 95\%$

Overall OEE

Calculation example:

$$\text{OEE} = 75\% \times 83\% \times 95\% = 59.1\%$$

World-class OEE Standards:

Level	OEE	Description
World Class	≥85%	World-class effectiveness
Good	70-84%	Room for improvement
Average	50-69%	Significant losses
Low	<50%	Urgent action required

1.3 Why is OEE Important for Mechanical Workshops?

Mechanical workshops have specific characteristics that make OEE a particularly valuable tool:

High Equipment Cost

- CNC machines are expensive assets
- Every hour of downtime = financial loss
- OEE shows actual return on investment

Diversity of Parts and Operations

- Frequent changeovers between batches
- Different standards for different parts
- OEE helps identify bottlenecks

Three-Shift Operation

- Need for comparing shift effectiveness
- Handover between shifts
- OEE provides a unified assessment standard

1.4 What Problems Does OEE Identify?

Availability Problems:

- Frequent breakdowns of specific machines
- Excessively long changeovers
- Downtime waiting for materials
- Ineffective planning

Performance Problems:

- Tool wear (speed reduction)
- Sub-optimal cutting modes
- Issues with CNC programmes
- Insufficient operator qualification

Quality Problems:

- Fixture wear
- Material issues
- Process errors
- Insufficient control

2. Who Fills in OEE and How

2.1 Machine Operator

Role in the OEE System

The operator is the **primary data source** for the OEE system. The operator sees what happens with the machine in real time and is the only one who can accurately record:

- When the machine operated
- When and why it was idle
- How many parts were manufactured
- How much scrap was produced

What the Operator Fills In

Time slots (every 15 minutes):

- **Running** — machine operating, processing in progress
- **Setting** — changeover, adjustment, tool change
- **Waiting Int** — internal waiting (crane, setter, programme)
- **Waiting Ext** — external waiting (material, task, drawing)
- **T. Failure** — tool failure
- **B. Down** — machine breakdown

Part data:

- Part number (Part No)
- Batch size
- Routed and actual setup time
- Routed and actual cycle time
- Production time
- Number of good parts (Good Parts)
- Number of scrap (Bad Parts)

Comments:

- Downtime reasons
- Problem descriptions
- Important information for the next shift

When to Fill In

Recommended: Fill in data **in real time** — every 15-30 minutes during natural pauses:

- During automatic processing
- When changing parts
- During breaks

Minimum: Complete before the end of shift, whilst events are fresh in memory.

Which Devices Can Be Used

Device	Advantages	When to Use
PC	Large screen, convenient for detailed work	Start/end of shift, for detailed entry
Tablet	Mobility + readability	At the machine, operational entry
Smartphone	Always to hand	Quick downtime marking, adding comments

2.2 Supervisor

Role in the OEE System

The supervisor **controls data quality** and uses it for **operational management**.

Main Tasks

Checking data correctness:

- Are all time slots filled?
- Does the data correspond to reality?
- Are there comments for downtime?

Operational analysis:

- Why did downtime occur?
- Could it have been prevented?
- What actions to take?

Shift comparison:

- Effectiveness of shifts on the same machine
- Identifying best practices
- Transferring experience between shifts

Which Reports Are Used

- **Downtime Analysis** — analysis of downtime causes
- **Shift Efficiency** — comparison of shift effectiveness
- **Plan vs Actual** — standard compliance

2.3 Manager / Engineer

Role in the OEE System

Management uses OEE data for **strategic decisions** and **systematic improvements**.

Main Tasks

Workshop effectiveness analysis:

- Overall OEE by workshop/section
- Trends over time
- Comparison with targets

Improvement planning:

- Determining priorities

- Calculating ROI from measures
- Tracking results

Process assessment:

- Routing Accuracy — standard precision
- Setup Efficiency — changeover effectiveness
- Cycle Time Efficiency — cycle time compliance

Which Reports Are Used

- **OEE Dashboard** — overall picture
- **Advanced Efficiency Reports** — in-depth analysis
- **Department Efficiency** — by departments
- **Routing Accuracy** — route precision

3. System Purpose and Benefits

3.1 Installation Options

Local Installation (On-Premise)

The system can be installed:

- On a local enterprise server
- In the corporate network
- On a dedicated PC in the workshop

Advantages:

- Full data control
- Works without internet
- Integration with internal systems

Cloud Deployment

The system can operate in the cloud with internet access.

Advantages:

- Access from anywhere
- Automatic updates
- No IT infrastructure required

3.2 System Access

Via Browser

The system works in any modern browser:

- Google Chrome (recommended)
- Mozilla Firefox
- Microsoft Edge
- Safari

Not required:

- Programme installation
- Special plugins
- Administrator rights

From Any Device

Device	Support	Features
Desktop PC	<input checked="" type="checkbox"/> Full	All functions, large screen
Laptop	<input checked="" type="checkbox"/> Full	Mobility + functionality
Tablet	<input checked="" type="checkbox"/> Full	Touch interface, at the machine
Smartphone	<input checked="" type="checkbox"/> Adaptive	Basic functions, emergency access

3.3 Benefits Over Paper Reports

Resource Savings

Resource	Paper Report	Electronic System
Paper	3-5 sheets/shift	0 sheets
Toner	Regular replacement	Not required
Storage	Document archive	Electronic database
Electricity	Printer, copier	Minimum

Annual savings (for 10-machine workshop):

- ~15,000 sheets of paper
- ~10 toner cartridges
- Hundreds of processing hours

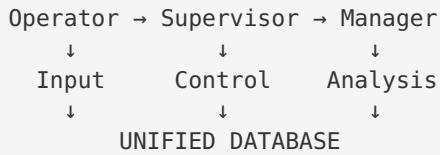
Time Savings

Operation	Paper Process	Electronic System
Report filling	15-20 min	5-10 min
Data search	20-30 min (archive)	10 sec (filter)
Summary preparation	2-3 hours	1 minute (Generate Report)
Data transfer	Physical, with delay	Instant, online

Error Elimination

Typical paper process errors:

- Illegible handwriting
- Document loss
- Errors when copying to Excel

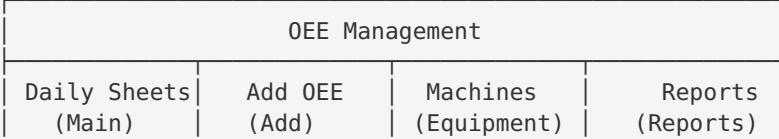

- Arithmetic errors
- Inconsistent data

Electronic system eliminates:

- Automatic OEE calculation
- Input data validation
- Unified storage format
- Impossibility of data loss

Single Data Source

All levels work with the same data:


This ensures:

- Information consistency
- Process transparency
- Decision-making speed
- Trust in data

4. System Overview

4.1 Application Structure

The OEE Management System consists of four main sections:

4.2 Navigation

At the top of the screen is the menu:

Section	Purpose	Who Uses
Daily Sheets	Viewing and editing OEE	Everyone
Add OEE	Creating new OEE sheet	Operators
Machines	Managing machine list	Administrator
Reports	Analytics and reports	Supervisors, Managers

5. Main Page (Daily OEE Sheets)

5.1 Purpose

The main page displays a **list of all completed OEE sheets** and allows:

- Quick finding of the required sheet
- Viewing key information
- Opening a sheet for editing
- Deleting erroneously created sheets

5.2 Displayed Data

The table contains the following columns:

Column	Description
Date	Date for which OEE was completed
Machine	Machine name
Department	Section/department
Part No	Part numbers (comma-separated)
Shifts	Which shifts are completed (Night, A, B)
Actions	Edit and delete buttons

5.3 Data Filtering

Date Filter

Select date range:

1. Click on the **Date From** field
2. Select the start date
3. Click on the **Date To** field
4. Select the end date

Tip: For quick search of yesterday's data — set both dates to yesterday.

Machine Filter

1. Open the **Machine** dropdown list
2. Select a specific machine or **All Machines**

Department Filter

Important: The Department filter appears only when "All Machines" is selected

1. Ensure "All Machines" is selected
2. Open the **Department** dropdown list
3. Select the required section

5.4 Working with OEE Sheets

Open for Viewing/Editing

1. Find the required sheet using filters
2. Click the **Edit** button (pencil icon) in the sheet row
3. The system will open the editing form

Delete Sheet

1. Click the **Delete** button (bin icon)
2. Confirm deletion in the dialogue box

Warning: Deletion cannot be undone! Ensure you are deleting the correct sheet.

6. Adding OEE (Add Daily OEE)

6.1 Step-by-Step Instructions

Step 1: Selecting Date, Machine and Shift

Date:

- Today's date is set by default
- To change, click on the date field and select the required one
- Data can be filled for past days

Machine:

- Select a machine from the dropdown list
- After selection, the machine's **Department** is automatically displayed

Shift:

- Select shift: **Night, A or B**
- Shift selection determines the time slot time frames

Shift	Time (Mon-Thu)	Time (Fri)	Weekends
Night	22:00-06:00	None	None
A	06:00-14:00	06:00-12:00	None
B	14:00-22:00	12:00-16:00	None

Step 2: Working with Time Slots

Visual Time Scale

After selecting the shift, a grid of 15-minute intervals is displayed.

Colour Coding:

Colour	Category	Description
Green	Running	Machine operating, processing in progress
Purple	Setting	Changeover, adjustment
Yellow	Waiting Int	Internal waiting
Grey	Waiting Ext	External waiting
Brown	T. Failure	Tool failure
Red	B. Down	Machine breakdown

How to Fill In:

1. Selecting slots:

- Click on a slot to select one interval
- Or hold the mouse and drag to select multiple slots

2. Assigning category:

- After selecting slots, click on the required category in the panel on the right
- Selected slots will be coloured with the corresponding colour

3. Completion indicator:

- Green border = all slots filled
- Red border = time missing or exceeded
- Grey border = filling in progress

Adding Comment to Time Slot:

1. Double-click on the time slot
2. Enter the comment in the appearing window
3. Click **Save**

When to add comments:

- During downtime — downtime reason
- During breakdown — fault description
- During quality issue — what happened
- Important information for the next shift

Step 3: Part Data (Production Parts Details)

Adding a Part:

1. Click the **+ Add Part** button
2. Fill in the fields:

Field	Description	Example
Part No	Part number per drawing	PN-12345
Batch Size	Batch size	500
Routed Setup (min)	Routed setup time	15
Actual Setup (min)	Actual setup time	18.5
Cycle Time Routed	Routed cycle time (min)	2.5
Cycle Time Actual	Actual cycle time (sec)	165
Production Time (min)	Total production time	420
Good Parts	Number of good parts	485
Bad Parts	Amount of scrap	15

Adding Next Batch of Same Part (Follow-on Batch):

1. Click + **Next Batch**
2. The system automatically copies:
 - Part No
 - Routed Setup
 - Cycle Time Routed
3. Fill in the remaining fields for the new batch

Deleting a Part:

Click the bin icon to the right of the part row.

Step 4: Saving OEE

1. Check all data is correct
2. Click the **Save Daily OEE** button
3. Wait for the successful save message

After saving:

- Data is recorded to the database
- Becomes available in reports
- Comments can be added to time slots
- Sheet can be edited later

7. Machines — Equipment Management

7.1 Section Purpose

The **Machines** section allows:

- Viewing the machine list

- Adding new machines
- Editing machine information
- Deleting machines

7.2 Adding a New Machine

1. Click the **+ Add Machine** button
2. Fill in the required fields:

Field	Required	Description	Example
Machine Name	<input checked="" type="checkbox"/> Yes	Unique machine name	Deco 1, Turning-5
Department	<input checked="" type="checkbox"/> Yes	Section/department	CNC, Turning, Milling
Machine Type	<input checked="" type="checkbox"/> Yes	Machine type	CNC Lathe, Milling Centre
Number of Axes	No	Number of axes	3, 4, 5

1. Click **Save**

7.3 Editing a Machine

1. Find the machine in the list
2. Click the **Edit** button (pencil)
3. Change the required fields
4. Click **Save**

7.4 Importance of Correct Department Assignment

Department is used for:

- Grouping machines in reports
- Filtering on the main page
- Calculating effectiveness by sections
- Comparative analysis

Recommendations:

- Use uniform names (CNC vs CNC — choose one)
- Group by functional attribute
- Align names with enterprise organisational structure

8. Reports — Reporting Guide

8.1 How to Generate a Report

Step 1: Set Filters

Date From / Date To:

- Select the period for analysis
- To compare periods, generate reports separately

Department:

- Select **All Departments** for general analysis
- Or a specific section for detailed analysis

Machines:

- After selecting Department, available machines are displayed
- Use **Select All / Clear All** for quick selection
- Or select specific machines

Step 2: Generation

1. Click **Generate Report**
2. Wait for data loading
3. The report will appear on the page

8.2 Report Descriptions**OEE Dashboard (Indicators Panel)****What it shows:**

- Availability, Performance, Quality, OEE — large cards
- OEE by Machine — bar chart
- OEE Trends over period — line graph

Who finds it useful:

- Managers — quick workshop status assessment
- Supervisors — machine comparison
- During briefings — current status visualisation

How to interpret:

- Availability < 85% — downtime issues
- Performance < 95% — not operating at full capacity
- Quality < 99% — scrap issues

Plan vs Actual Comparison**What it shows:**

Metric	Description
Routed Setup	Routed setup time
Actual Setup	Actual setup time
Δ Setup	Difference (+ overrun, - saving)
Cycle Time Routed	Standard cycle time
Cycle Time Actual	Actual cycle time
Production Time	Total production time

Efficiency Metrics:

Metric	What It Shows	Target Value
Setup Efficiency	Setup time vs standard	$\geq 100\%$
Cycle Time Efficiency	Cycle time compliance	$\geq 100\%$
Production Efficiency	Time utilisation effectiveness	$\geq 85\%$
Overall Efficiency	Combined indicator	$\geq 90\%$

Δ Setup Colour Coding:

- ● Red (+ values) — setup time overrun
- ● Green (- values) — time saving
- ● Neutral (0) — exact compliance

Who finds it useful:

- Engineers — analysing standard accuracy
- Technologists — route correction
- Planners — realistic planning

Downtime Analysis

What it shows:

- Breakdown (minutes) — breakdown time
- Setting (minutes) — changeover time
- Tool Failure (minutes) — tool failures
- Waiting Ext (minutes) — external waiting
- Waiting Int (minutes) — internal waiting
- Pie Chart — downtime distribution

Extended metrics:

Metric	Description	Formula
MTBF	Mean Time Between Failures	Operating time / Number of breakdowns
MTTR	Mean Time To Repair	Total repair time / Number of repairs

Who finds it useful:

- Maintenance department — prioritising work
- Supervisors — operational resolution
- Managers — assessing equipment reliability

Scrap & Quality Reports

What it shows:

Metric	Description
Scrap by Shift	Scrap quantity by shifts
Scrap Trend	Scrap dynamics over period
Good vs Bad Parts	Ratio of good to scrap
Scrap Rate	Scrap percentage
Yield	Good parts output

Who finds it useful:

- Quality department — scrap cause analysis
- Operators — self-control
- Managers — loss assessment

Advanced Efficiency Reports

Shift Efficiency:

- Shift effectiveness comparison
- Identifying best practices
- Deviation analysis

Department Efficiency:

- Effectiveness by sections
- Comparative analysis
- Finding bottlenecks

Routing Accuracy:

- Route standard accuracy
- % plan/actual variance
- Recommendations for correction

Total Earned Hours vs Total Clocked Hours:

- Earned hours (per standard)
- Actual hours worked
- Working time utilisation effectiveness

8.3 Report Export

Export to PDF

1. Generate the report
2. Click the **Export to PDF** button
3. Wait for generation (may take 10-15 seconds)
4. PDF downloads automatically

PDF Contents:

- Page 1: Plan vs Actual Table + Summary Statistics + Efficiency Metrics
- Page 2: Charts & Analytics (shift charts)
- Page 3: Good vs Bad Parts + Downtime Analysis + OEE Metrics

PDF Features:

- Optimised for A4 printing
- All data matches web version
- Charts with annotations (actual values)
- Large, readable KPI indicators

Export to Excel

1. Generate the report
2. Click the **Export to Excel** button
3. .xlsx file downloads automatically

Excel Contents:

- Sheet 1: OEE Metrics — all indicators by machines
- Sheet 2: Plan vs Actual — detailed by operations

What to use for:

- Additional analysis in Excel
- Building custom charts
- Integration with other systems
- Data archiving

9. Best Practices

9.1 How to Properly Maintain OEE During a Shift

Start of Shift (first 15 minutes)

1. **Log into the system** from a device at the machine
2. **Open Add OEE** or find the existing sheet
3. **Check previous shift data** (if any)
4. **Read comments** — there may be important information

During the Shift

Every 30-60 minutes:

- Mark time slots from the last update
- This takes less than a minute
- Do during automatic processing

During each downtime:

- Immediately mark the downtime category
- Add a comment with the reason

When changing part/batch:

- Fill in Good Parts / Bad Parts
- Add new part/batch

End of Shift (last 15 minutes)

1. **Check all time slots** — all should be filled
2. **Check part data** — all fields filled
3. **Add comments** for the next shift
4. **Save OEE**

5. **Confirm** successful save

9.2 Why Real-Time Filling is Important

Advantages of Immediate Filling:

Aspect	End of Shift Filling	Real-Time Filling
Accuracy	~70-80%	~95-99%
Filling time	15-20 min	5-10 min (total)
Stress	High (must remember everything)	Minimal
Comment detail	General	Detailed
Forgotten downtime	Frequent	Rare

What is Forgotten by End of Shift:

- Exact duration of short downtime
- Micro-stoppage causes
- Event sequence
- Problem details

9.3 How Comments Help Analysis

Good Comments:

“Coolant pump breakdown, waited 45 min for repair, seal replaced”

- What happened
- How long waited
- What was done

“Waiting for material PN-12345 from warehouse, delay due to stocktaking”

- What was waited for
- Why the delay

“Increased scrap due to tool wear, replaced after 50 pcs”

- Problem
- Action
- Quantitative assessment

Poor Comments:

“Downtime” — unclear why

“Breakdown” — which one? what was done?

“Waited” — for what? how long?

9.4 Typical Errors and How to Avoid Them

Error 1: Not All Time Slots Filled

Problem: Missing slots make OEE data incorrect.

Solution: Before saving, ensure the indicator shows 100% completion (green border).

Error 2: Wrong Downtime Category

Problem: Confusion between Setting and Waiting Int, between T. Failure and B. Down.

Solution:

- **Setting** = operator actively working (changing tools, adjusting)
- **Waiting** = operator waiting (material, task, crane)
- **T. Failure** = tool failure (broken cutter)
- **B. Down** = machine breakdown (component failure, CNC error)

Error 3: Good + Bad Parts \neq Batch Size

Problem: Sum of good and scrap doesn't equal batch size.

Solution: Check: Good Parts + Bad Parts \leq Batch Size

Error 4: Forgot to Save

Problem: Data lost, need to fill again.

Solution:

- Always click **Save Daily OEE**
- Wait for successful save message
- Save periodically, not just at end of shift

Error 5: Confusion with Seconds and Minutes

Problem: Cycle Time Actual is entered in seconds, the rest in minutes.

Solution: Pay attention to field labels:

- **Cycle Time Routed** — minutes (2.5 min)
- **Cycle Time Actual** — seconds (165 sec)

10. Conclusion

10.1 Role of OEE in Continuous Improvement

OEE is not just an indicator, but a **continuous improvement tool**.

OEE Improvement Cycle:

What this cycle provides:

- Objective assessment of current state
- Identification of priority problems
- Measurable improvement results
- Sustainable changes

10.2 How the System Helps Each Level

For Operators:

- **Simplifies reporting** — quick filling instead of paper
- **Makes work visible** — achievements are recorded
- **Helps transfer information** — comments for shifts
- **Reduces claims** — data is objective

For Supervisors:

- **Saves time** — reports generate instantly
- **Provides facts** — instead of subjective assessments
- **Helps make decisions** — real-time data
- **Simplifies upward reporting** — export to PDF/Excel

For Management:

- **Transparency** — real workshop picture
- **Prioritisation** — where to direct resources
- **ROI from improvements** — measurable effect
- **Strategic planning** — data for decisions

10.3 Why the System Suits Mechanical Workshops

Accounts for Production Specifics:

Frequent Changeovers

- Separate Setting accounting
- Routed vs Actual Setup
- Setup Efficiency

Part Diversity

- Accounting by Part No

- Individual standards
- Routing Accuracy

Three-Shift Operation

- Night / A / B shifts
- Shift Efficiency
- Shift comparison

Complex Equipment

- Detailed downtime analysis
- MTBF / MTTR
- Repair prioritisation

10.4 Modern Digital Production

OEE Management System is a step towards **Industry 4.0**:

- **Digitalisation** — paperless
- **Transparency** — data accessible to all levels
- **Real time** — current information
- **Analytics** — data transforms into knowledge
- **Mobility** — work from any device

Appendix A: Glossary of Terms

Term	Description
OEE	Overall Equipment Effectiveness — overall equipment effectiveness
Availability	Ratio of actual operating time to planned
Performance	Ratio of actual speed to standard
Quality	Proportion of good parts
MTBF	Mean Time Between Failures
MTTR	Mean Time To Repair
Routing	Standard processing parameters
Cycle Time	Time to process one part
Setup Time	Changeover time between batches
Downtime	Time when equipment is not producing

Appendix B: Quick Actions

Action	How to Perform
Select multiple slots	Hold mouse + drag
Add comment	Double-click on slot
Quick PDF export	“Export to PDF” button
Reset filters	“Clear All” button
Select all machines	“Select All” button

Appendix C: Support Contacts

For questions or issues, contact:

Technical Support:

- System operation questions — system administrator
- Data questions — shift supervisor

Methodological Support:

- OEE filling questions — shift supervisor
- Report interpretation questions — quality engineer

© 2026 OEE Management System. All rights reserved.